Experimental and computational studies of alkali-metal coinage-metal clusters.
نویسندگان
چکیده
Coinage and alkali metal mixed clusters, M4Na- (M = Cu, Au) have been investigated experimentally using photoelectron spectroscopy and computationally at correlated ab initio levels. The related Cu4Li-, Ag4Li-, Ag4Na-, and Au4Li- clusters as well as the neutral Cu4Li2 and Cu4Na2 clusters have also been studied computationally. The calculations show that the two lowest isomers of the negatively charged clusters include a pyramidal C4v structure and a planar C2v species. For Cu4Li- and Cu4Na-, the C4v structure is calculated at correlated ab initio level to be 30.9 and 16.9 kJ/mol below the planar C2v isomer, whereas the planar isomers of Au4Li- and Au4Na- are found to be 29.7 and 49.4 kJ/mol below the pyramidal ones. For Ag4Li- and Ag4Na-, the pyramidal isomers are the lowest ones. Comparison of the calculated and measured photoelectron spectra of Cu4Na- and Au4Na- shows that the pyramidal Cu4Na- cluster of C4v symmetry and the planar Au4Na- of C2v symmetry are detected experimentally. Calculations of the magnetically induced current density in Cu4Li- and Cu4Li2 using the Gauge-Including Magnetically Induced Current (GIMIC) method show that strong ring currents are sustained mainly by the highest-occupied molecular orbital primarily derived from the Cu 4s. The GIMIC calculations thus show that the Cu4(2-) ring is -aromatic and that the d orbitals do not play any significant role for the electron delocalization effects. The present study does not support the notion that the square-planar Cu4(2-) is the first example of d-orbital aromatic molecules.
منابع مشابه
Phenyl-coinage metal (Ag, Au) complexes: an anion photoelectron spectroscopy and density functional study.
The important intermediate phenyl-coinage metal complexes (Ag(m)C6H5(-), Au(m)C6H5(-)), which are produced from the reactions between coinage metal clusters formed by laser ablation and the benzene molecules seeded in argon carrier gas, are studied by PES (photoelectron spectroscopy) and DFT (density functional theory). The EAs (adiabatic electron affinities) of these complexes are obtained fro...
متن کاملDiverse reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors† †Electronic supplementary information (ESI) available: Experimental and calculation details, and crystallographic information for 2, 3, 4, 6, 8. CCDC 1038665, 1038666, 1038667, 1011534, and 1011533. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00404g Click here for additional data file. Click here for additional data file.
This journal is © The Royal Society of C of a tricoordinate organoboron L2PhB: (L 1⁄4 oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors† Lingbing Kong, Rakesh Ganguly, Yongxin Li and Rei Kinjo* The reactivity of a tricoordinate organoboron L2PhB: (L1⁄4 oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. Whil...
متن کاملCoinage Metal-Ethylene Complexes Supported by Tris(pyrazolyl)borates: A Computational Study
Data from computational and experimental sources have been combined to address the bonding and structure of [RB(3-(R),5-(R)Pz)3]M(C2H4) complexes, where M ) Cu, Ag, Au. A κ3 to κ2 distortion of the scorpionate ligand was also studied. NMR properties were deemed to be the most useful in assessing the nature of the bonding in these complexes. Using computational recipes, 13C chemical shifts accur...
متن کاملIRMPD Spectroscopy of Metalated Flavins: Structure and Bonding of Lumiflavin Complexes with Alkali and Coinage Metal Ions.
Flavins are a fundamental class of biomolecules, whose photochemical properties strongly depend on their environment and their redox and metalation state. Infrared multiphoton dissociation (IRMPD) spectra of mass selected isolated metal-lumiflavin ionic complexes (M+LF) are analyzed in the fingerprint range (800-1830 cm-1) to determine the bonding of lumiflavin with alkali (M=Li, Na, K, Cs) and...
متن کاملThe Effect of Coinage Transition Metal (Cu, Ag, Au) Substitutions on Two-electron Redox Potential of Quinones
Quinones are a class of compounds which have widespread importance in chemistry, biology and medicine. Because of their appropriate performance in electron transferring rate, quinones are among the most applicable mediators in biosensors. Recently, the effects of different non-metal substitutions on redox potential of quinone have been investigated to design suitable mediators for different ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 110 12 شماره
صفحات -
تاریخ انتشار 2006